Involvement of human multidrug and toxin extrusion 1 in the drug interaction between cimetidine and metformin in renal epithelial cells.

نویسندگان

  • Masahiro Tsuda
  • Tomohiro Terada
  • Miki Ueba
  • Tomoko Sato
  • Satohiro Masuda
  • Toshiya Katsura
  • Ken-ichi Inui
چکیده

In human proximal tubules, organic cations are taken up from blood into cells by human organic cation transporter 2 [hOCT2/solute carrier (SLC) 22A2] and then eliminated into the lumen by apical H(+)/organic cation antiporters, human multidrug and toxin extrusion 1 (hMATE1/SLC47A1) and hMATE2-K (SLC47A2). To evaluate drug interactions of cationic drugs in the secretion process, epithelial cells engineered to express both hOCT2 and hMATE transporters are required to simultaneously evaluate drug interactions with renal basolateral and apical organic cation transporters. In the present study, therefore, we assessed the drug interaction between cimetidine and metformin with double-transfected Madin-Darby canine kidney cells stably expressing both hOCT2 and hMATE1 as an in vitro model of the proximal tubular epithelial cells. The basolateral-to-apical transport and intracellular accumulation of [(14)C]metformin by a double transfectant were markedly inhibited by 1 mM cimetidine at the basolateral side. On the other hand, 1 microM cimetidine at the basolateral side moderately decreased the basolateral-to-apical transport of [(14)C]metformin and significantly increased the intracellular accumulation of [(14)C]metformin from the basolateral side, suggesting that cimetidine at a low concentration inhibits apical hMATE1, rather than basolateral hOCT2. Actually, in concentration-dependent inhibition studies by a single transporter expression system, such as human embryonic kidney 293 stably expressing hMATE1, hMATE2-K, or hOCT2, cimetidine showed higher affinity for hMATEs than for hOCT2. These results suggest that apical hMATE1 is involved in drug interactions between cimetidine and cationic compounds in the proximal tubular epithelial cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanistic in vitro studies confirm that inhibition of the renal apical efflux transporter multidrug and toxin extrusion (MATE) 1, and not altered absorption, underlies the increased metformin exposure observed in clinical interactions with cimetidine, trimethoprim or pyrimethamine

Metformin is a common co-medication for many diseases and the victim of clinical drug-drug interactions (DDIs) perpetrated by cimetidine, trimethoprim and pyrimethamine, resulting in decreased active renal clearance due to inhibition of organic cation transport proteins and increased plasma exposure of metformin. To understand whether area under the plasma concentration-time curve (AUC) increas...

متن کامل

Competitive inhibition of the luminal efflux by multidrug and toxin extrusions, but not basolateral uptake by organic cation transporter 2, is the likely mechanism underlying the pharmacokinetic drug-drug interactions caused by cimetidine in the kidney.

Cimetidine, an H₂ receptor antagonist, has been used to investigate the tubular secretion of organic cations in human kidney. We report a systematic comprehensive analysis of the inhibition potency of cimetidine for the influx and efflux transporters of organic cations [human organic cation transporter 1 (hOCT1) and hOCT2 and human multidrug and toxin extrusion 1 (hMATE1) and hMATE2-K, respecti...

متن کامل

Impact of Substrate-Dependent Inhibition on Renal Organic Cation Transporters hOCT2 and hMATE1/2-K-Mediated Drug Transport and Intracellular Accumulation.

Renal transporter-mediated drug-drug interactions (DDIs) are of significant clinical concern, as they can adversely impact drug disposition, efficacy, and toxicity. Emerging evidence suggests that human renal organic cation transporter 2 (hOCT2) and multidrug and toxin extrusion proteins 1 and 2-K (hMATE1/2-K) exhibit substrate-dependent inhibition, but their impact on renal drug secretion and ...

متن کامل

The inhibition of human multidrug and toxin extrusion 1 is involved in the drug-drug interaction caused by cimetidine.

Cimetidine is known to cause drug-drug interactions (DDIs) with organic cations in the kidney, and a previous clinical study showed that coadministration of cimetidine or probenecid with fexofenadine (FEX) decreased its renal clearance. FEX was taken up into human kidney by human organic anion transporter (hOAT) 3 (SLC22A8), but the mechanism of its luminal efflux has not been clarified. The pr...

متن کامل

Molecular mechanism of renal tubular secretion of the antimalarial drug chloroquine.

The antimalarial drug chloroquine is eliminated to a significant extent by renal tubular secretion. The molecular mechanism of renal chloroquine secretion remains unknown. We hypothesized that organic cation transporter 2 (OCT2) and multidrug and toxin extrusion protein 1 (MATE1), localized in the basolateral and luminal membranes of proximal tubule cells, respectively, are involved in chloroqu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 329 1  شماره 

صفحات  -

تاریخ انتشار 2009